
0 0.31 

l- 

ill 
0 0.2 
Z 
6 
m cc 
0 0.1 m 

a 

: 

- 

- 

1 0  
20 60 100 140 180 220240 

MINUTES 

Figure 5-Stability of colored product 

For the present sl udy, tablet samples were obtained from the local 
market. Five out of the eight samples were found by TLC to contain 
lactose and lactose isonicotinoyl hydrazone. Lactose-containing tablets 
(Table 111, Samples A-D), when assayed by the proposed procedure, were 
found to contain between 78 and 90% of the labeled amount of free iso- 
niazid. As much as 10-22% of isoniazid was present in the bound form 
with lactose and was probably not available for absorption. On the other 
hand, quantitative recoveries were obtained by the official method in the 
analysis of these tablets. Tablets that  did not contain lactose gave com- 
parable recoveries by both the official and the proposed methods. 

When freshly prepared lactose-containing granules and the tablets 
prepared from them (Table 111, Samples E and F) were analyzed by the 
proposed method, interaction between isoniazid and lactose was only 
1-3%. Therefore, the significant interaction between isoniazid and lactose 

Table 111-Analysis of Isoniazid Tablets 

Labeled Recoveryn, mg/tablet Presence of 
Amount, m P  P roposed Isoniazid 

Sample mg/tablet Method Method Hydrazone Lactose 

A 100 98.60 86.83 + + 
B 50 50.73 39.50 + + 
c 50 51.94 39.17 + + .. 

D 100 100.90 89.72 + + 
E b  300 305.21 301.20 +- + 
F‘ 300 306.97 297.76 + + - - 

- 99.70 99.52 G 100 
H 300 308.83 304.92 
I 300 297.80 299.65 

Average result of three determinations. * Freshly prepared tablets. Granules 

- - - 

ready for the preparation of tablets. 

in the tablets apparently occurs only on standing over an extended period. 
The interaction seems to  be negligible a t  the granulation stage. 

The proposed method is specific for the estimation of isoniazid in the 
presence of its hydrazones. Significant interaction between isoniazid and 
lactose, resulting in the formation of lactose isonicotinoyl hydrazone, has 
been established. This interaction is likely to interfere with the bio- 
availability of isoniazid from its dosage forms. 
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Abstract  The point-area method for deconvolution derives a “stair- 
case” input function which, when convolved onto the characteristic 
function, gives an output function coincidental with the given output data 
points. The area-area method for deconvolution is shown to be errone- 
ous. 

Keyphrases 0 Deconvolution-point-area and area-area methods for 
determining in uiuo input functions compared 0 Input functions, in 
uiuo-deconvolution point-area and area-area methods of determination 
compared 0 Pharmacokinetics-deconvolution point-area and area-area 
methods for determining in uiuo input functions compared 

the two processes. Any rigorous investigation of such an 
isomorphism ultimately requires the derivation of the in  
uiuo drug input function. This function can be derived for 

The use of in uitro dissolution functions for predicting 
differences in the rate and extent of in uiuo drug dissolu- 
tion depends on a correspondence (isomorphism) between 
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linear systems by mathematical or numerical deconvolu- 
tion of the response to some particular drug input and the 
characteristic response of the system (1-6). 

A known method for numerical deconvolution is the 
so-called area-area method as detailed by Rescigno and 
Segre (7). However, this method is ambiguous, if not er- 
roneous. Furthermore, there seems to be some confusion 
about its exact mathematical basis. For example, Benet 
and Chiang (8) implied that the method is only appropriate 
when the characteristic response is a single exponential 
function, and Wagner (9) shifted the derived data to re- 
cover a known input function, which would be inappro- 
priate for an arbitrary input function. 

For clarification, this deconvolution method is now de- 
rived, and it is shown how it relates an unknown input 
function to a “staircase” input. 

THEORY AND DISCUSSION 

If the body is regarded as a linear system, then the blood drug con- 
centration-time curve, Y ( t ) ,  obtained with an arbitrary but finite drug 
input into the body can be described by the convolution integral: 

Y ( t )  = s‘ ln(r)G(t - J )  d r  = In(t)*G(t) (Eq. 1) 

where G ( T )  is the blood drug concentration-time function obtained with 
a unit drug impulse input (i.e., the characteristic response) and In(T) is 
the function that, when integrated between limits o f t  = 0 and t ,  yields 
the cumulative amount of drug delivered to the impulse input point [i.e., 
h ( r )  is the input function]. Throughout, it is assumed that both G ( t )  and 
ln(t)  are bounded nonnegative functions and Riemann integrable on [0, 

Even if G ( T )  and Y ( J )  are known analytically, the integral function 
defined by Eq. 1 cannot be solved, except in certain cases, for In(r) by 
general formulas because the Laplace transform of Eq. 1: 

y(s )  = ln(s)g(s) (Eq. 2)  

m l .  

with solution: 

(Eq. 3) 

cannot be transformed back into time space by the convolution theorem 
since l/g(s) is not a Laplace transform (10). This fact indicates the need 
for general deconvolution methods. In general, numerical evaluation of 
y ( s )  and g(s), with subsequent numerical calculation of Ids )  and in- 
version, is unsuccessful because of instability (1 1,12). Fourier transform 
methods have been used and are reasonably accurate (12). However, a 
simple numerical method would be advantageous. 

Response to Staircase Input-A staircase input is defined as a finite 
set of rectangular pulses of duration p ,  - pJ-1 and intensity I j ,  each 
commencing a t  t = p,-l and ending at t = p, (je 1 , 2 , 3 .  . . ), where I ,  
> 0, t > 0, and PO = 0. Then the response of a linear system to a staircase 
input at  the time points p, can be obt,ained by application of standard 
Laplace transformation methods (10): 

where j 

= a for all j ,  then substitution of p,  = JU and pi = ia into Eq. it gives: 

I ,  2 ,3  . . . , po  = 0, and Y ( 0 )  = 0. 
In  particular, if the staircase pulse lengths are all equal, say p ,  - p,- 1 

(Eq. 5) 

where j E 1 , 2 , 3 . .  . and Y ( 0 )  = 0. 
Given the exact output, Y(p , )  at time points p ,  or YGa) at time points 

j a ,  and the function G ( J ) ,  a particular staircase input functiun can be 
recovered exactly by algebraic manipulation of Eq. 4 or 5. The details for 
an equal pulse length staircase input function are as follows. 

By defining the pulse length as a and: 

J n a  G ( 7 )  d r  A,, (Es.  6) 
n - l ) a  

Figure 1-Representation of an input function by a minimum (left) 
and maximum (right) staircase fUnCticJfl. 

where n E 1 , 2 , 3  . . . , and then by applying Eq. 5 and rearranging, the 
1 ’s  are given by: 

(Eq. 7 4  

A similar set of equations can be constructed for unequal pulse lengths 
by applying Eq. 4. 

Deconvolution Using Staircase Functions-Given the output of 
a linear system, Y(p,) ,  a t  time points t = p ,  corresponding to some ar- 
bitrary input function, In(t), and the appropriate G ( J ) ,  a staircase input 
function can always be derived from the data by applying Eq. 4 or 5. This 
derived staircase input function, U,(t), when convolved on G(J) ,  will yield 
a function exactly coincidental with the given output data points Y(p , )  
a t  t = p,. Since Us ( t  ) is derived using specific output data points and the 
integral of G ( T ) ,  it is appropriate to designate this deconvolution method 
as the point-area method. 

That each step of the derived staircase function, U,(t) ,  intersects the 
true input function, In(t), can be shown as follows. For any nonnegative 
bounded and finite drug input, a staircase function, U , ( t ) ,  exists such 
that the magnitude of each step is equivalent to the minimum value of 
In(t) in each step period (Fig. 1, left), since: 

Y ( n a )  - I l A ,  - lzA,-1. . . In-lAz 
Ai 

In = 

(Eq. 8) 

the convolution of U,( t )  on C(7) is always less than the true output 
function in the time interval (0, a). Similarly, there exists a staircase 
function, Uz(t) ,  such that the magnitude of each step is equivalent to the 
maximum value of In(t) in each step period (Fig. 1, right), since: 

the convolution of U2(t) on G(7) is always greater than the true output 
function in the time interval (0, a). Consequently, the staircase function, 
Us(t), which, when convolved on G ( T )  is coincidental with the true output 

Table  I-Comparison of the Cumulative Drug Input  and T h a t  
Determined by Deconvolution a 

Exact Est,imated 
Cumulative Cumulative 

Hours Input, % Input, Error, % 

1 
2 
3 

49.99 
74.99 
87.49 

49.15 
73.75 
86.07 

-1.68 
- 1.65 
-1.63 

4 93.75 92.24 -1.61 
5 96.87 95.33 -1.59 
6 98.44 96.89 -1.57 
7 99.22 97.67 -1.56 

0 Output data Y ( t )  were generated a t  the tiines shown hy application of Eq. 1. 
where G ( t )  = 5e-0.4L + 5e-0.2‘ and In(t)  = 0.693e-0.693’. Cumulative drug input 
was estimated by application of Eqs. 7a-7d. and the exact input was determined 
by the integration of the input function. 
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Table 11-Maximum Errors Associated with the Deconvolution 
for Various Input  Functionsa 

Input Maximum 
- Function a Error, % 

2 -4.56 
1.5 -3.52 
1 .0 -2.40 
0.693 -1.68 
0.35 -0.86 

Output data Y ( t )  were generated a t  t = 1 by Eq. 1 using the same C ( t )  as in 
Table I and various input functions, ln(t) = <re-at. Cumulative drug input was 
estimated by application of Eq. 7 a ,  and the exact input was determined by the in- 
tegration of the input function. 

at  the end of each step, intersects or is coincidental with the true input 
function in the period of each step. 

The exact points of intersection for U,( t )  and In(t) cannot be specified 
since they depend on the exact form of the unknown input function. 
However, the cumulative in uiuo drug input is the function most often 
required for comparison with i n  uitro dissolution data. The cumulative 
in uiuo input is readily obtainable by multiplication of the derived I values 
by the period of each step and summation. 

Since the derived staircase input function, U , ( t ) ,  does not depend on 
the form of G ( T ) ,  the method is equally appropriate for any G(T) .  Oh- 
viously, the accuracy of the derived cumulative input depends on the step 
length since, as all step lengths tend to zero, U,(t)  - ln(t). 

The cumulative input derived by the point-area method is an excellent 
approximation of the true cumulative input. Some results are presented 
in Table I. These data assume an exponential input function and a 
sampling period equal to the half-life of the input function; such an input 
function and sampling period are likely to represent extremes of those 
occurring in practice. The disposition function, G ( T ) ,  was arbitrarily 
chosen as a biexponential function. 

As indicated by the data in Table I, the derived cumulative input slowly 
converges onto the true cumulative input and the maximum error occurs 
in the first period. The latter error is a function of the input function and 
the first output data point, as illustrated by the data in Table 11. The 
4.5696 error corresponding to 01 = 2 represents an extreme case since 86% 
of the input occurs in the first period. 

Erroneous Area-Area Method of Deconvolution-Rescigno and 
Segre (7) described a perfectly valid method for the numerical convolu- 
tion of two functions. Essentially, this method approximates one function 
to an equal pulse length staircase function such that the area of each step 
is identical to the area of the function itself during each step. The cor- 
responding areas of the staircase function are then convolved on the other 
function. Analytically, this method corresponds to the multiplication of 
Eq. 5 by the pulse lengths, say a ,  and the output is given as a Y G a ) ,  j E 
1 , 2 , 3 .  . . . Unfortunately, when inversing the procedure (i.e., deconvo- 
lution)> a Y G a )  is interpreted as the actual area of the output function: 

(Eq. 10) 

Obviously, the equality of Eq. 10 is erroneous for most output functions, 
Y ( t ) .  Nevertheless, this method of deconvolution has been used and 
designated as the area-area method of deconvolution (8). 

A comparison of the percentage errors of the area-area and point-area 
methods is given in Fig. 2. Output data Y ( t )  were generated by Eq. 1 
where G ( t )  = 6e-0 2f  and In(t) = 0.5e-05t‘. Exact cumulative input was 
determined hy integration of the input function. The estimated cumu- 

5100 - 0- o-o-o- -3-Q-R 
z, n t  X X 

X 

U 
0 8ot 

HOURS 
Figure 2-Percentage errors i n  the cumulative drug input  obtained by 
the point-area (0) and the area-area (X) methods of deconuolution. 
T h e  solid line represents zero error. 

lative input was determined by the method of Rescigno and Segre (7) for 
the area-area method and by Eqs. 7a-7d for the point-area method. As 
expected, the area-area method gave large and generally unpredictable 
errors. 

Input functions, as used in Eq. 1, define the drug input to the point at  
which an impulse input is applied to the body. The actual physical 
meaning of this function depends on how the characteristic response is 
defined. For example, if the characteristic response is defined as the re- 
sulting blood concentration-time function after an intravenous bolus dose 
and the data after an oral solution dose are deconvoluted, the resulting 
input function represents both drug absorption and transport through 
the liver. These concepts and definitions of input functions were discussed 
previously (13). 

In conclusion, deconvolution using a staircase input function is a simple 
and accurate method for the assessment of cumulative in uiuo drug input. 
The method does not require equally spaced output data points either 
during or after drug absorption as suggested by Wagner (9). 
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